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Three-dimensional micromagnetic simulations of multidomain bubble-state excitation spectrum
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The excitation spectrum of multidomain bubble states in cylindrical nanodots with a large perpendicular
anisotropy has been investigated by means of three-dimensional micromagnetic simulations for various dot
diameters. In a first step, the evolution of the zero-field susceptibility spectra as a function of the dot diameter
is studied for bidomain bubble states. Increasing dot diameter leads to shifts of the resonance frequencies
toward the low frequencies for the fundamental domain wall and domain modes, whereas the spectral positions
of surface domain wall and domain modes are weakly affected. Second, the high-frequency response of a
tridomain bubble state stabilized in larger dot diameters is analyzed. Dynamic interaction effects are revealed
mainly through the identification of coupled domain-wall modes, the resonance frequencies of which depend
on the relative domain-wall chiralities. Lastly, the magnetization dynamics of a metastable bidomain bubble
state with a pair of vertical Bloch lines, each of them possessing a Bloch point, is addressed. In such a case, the
presence of magnetic singularities leads to a splitting of the fundamental domain-wall mode into two resonance

lines assigned to oscillations of domain-wall parts with different phase relations.

DOI: 10.1103/PhysRevB.78.184411

I. INTRODUCTION

Mesoscopic magnetic elements with a uniaxial perpen-
dicular anisotropy are nowadays the subject of considerable
attention. Besides the potential applications in high-density
storage media and magnetoelectronic devices, these mag-
netic objects can be viewed, from the theoretical point of
view, as a model system for studying the spin dynamics
within confined geometries with well-controlled equilibrium
magnetization configurations. Indeed, a remarkable feature
of such objects is the ability to display a large variety of
stable remanent micromagnetic states depending on the sys-
tem shape and size, the strength of the perpendicular aniso-
tropy characterized by the quality factor Q (0=2K,/ ,uOMé,
where K, is the uniaxial perpendicular anisotropy, Mg the
saturation magnetization, and w, the permeability of free
space), and the magnetic history of the sample.

A significative effort has been devoted to the static mag-
netic properties of such elements mainly in terms of obser-
vation and analysis of stable micromagnetic states.'™® Pio-
neer experimental works on submicrometer-size hcp Co dots
revealed, in particular, the presence of concentric domains
above a critical dot thickness! by means of magnetic force
microscopy (MFM) images. The concentric domains consist
in coaxial domains with alternately up and down perpendicu-
lar magnetization components, the domains adopting the in-
plane shape of the magnetic element.* This magnetic con-
figuration recalls the weak stripe domain structure existing in
extended films with a perpendicular anisotropy.'® For cylin-
drical Co dots, the stability range for concentric weak stripe
domains in the plane (thickness, diameter) has been esti-
mated by means of static micromagnetic simulations.’ Simi-
larly, it has been evidenced® by combining MFM images and
static micromagnetic simulations that Ni dots support various
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regular domain patterns, the characteristics of which can be
predicted by the reduced parameter Dy=D/P,, where D is
the dot diameter and P is the zero-field period of stripe
domains existing for the continuous film with the same mag-
netic parameters and the same thickness.!%'> The quasiuni-
form single-domain flower state is the only stable configura-
tion for Dy<<1/2, whereas bidomain states appear
energetically favorable for larger values of Dy (Dy=1). Two
types of bidomain states have been identified, namely, a two-
stripe domain structure including a rectilinear domain wall
(DW) and a concentric bidomain state. A detailed analysis of
the equilibrium magnetization associated with concentric bi-
domain states has been performed for low (Q << 1, Permalloy-
like systems) and moderate (Q <1, Co- or Ni-like systems)
Q factors.” The case of large Q factor (Q > 1, FePt-like sys-
tems) has been also recently reported.® The concentric bi-
domain structure was found to be the ground state for cylin-
drical dots within a large diameter range. For this Q value
regime, the concentric bidomain state displays up and down
circular domains separated by a sharp DW and can be
viewed as the confined version of a bubble domain existing
in a perpendicular magnetized film.'3 Hereafter, this mag-
netic configuration will be termed bidomain bubble state.
The stability of the bidomain bubble state as functions of the
dot diameter, the dot thickness, and the strength of a static
magnetic field applied along the symmetry axis has been also
studied numerically.?

On the other hand, the dynamic properties of such objects
have been far less investigated. Recently, the high-frequency
(0.1-80 GHz) linear response of cylindrical elements with a
large perpendicular anisotropy supporting bidomain states
(Dg=1) has been investigated using three-dimensional (3D)
micromagnetic simulations.'* For both the two-stripe domain
and the bidomain bubble states, it has been found that the
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zero-field dynamic susceptibility spectra exhibit multiple
resonance lines assigned to domain-wall modes, mixed do-
main wall and domain modes, and domain modes. However,
the magnetic excitation spectrum for higher lateral size ele-
ments remains to be explored.

The present work has been also partly motivated by recent
experimental results that evidenced the presence of single
(bidomain) and higher-order (tridomain) magnetic bubbles in
FePt dots with various diameters by MFM imaging.’ In ad-
dition, a phase diagram in the plane (radius and thickness)
was numerically constructed, delimiting the stability range
for theses two states.

The main purpose of this paper is to investigate the static
and dynamic properties of bubble states as a function of the
dot diameter by means of full 3D micromagnetic simula-
tions. In a first part, the range 1 =Dy=2, where the bido-
main bubble state is energetically favorable, is probed. The
dot diameter dependence of the associated dynamic suscep-
tibility spectra is pointed out. In the second part, the trido-
main bubble state (D,=2) is considered. Attention is paid on
the dynamic coupling between the two DWs inside the cy-
lindrical dot. In addition, the role played by the relative
chiralities of the DWs on the high-frequency response of the
tridomain bubbles is analyzed. Lastly, the complicated case
of a metastable bidomain bubble state—including a pair of
interacting vertical Bloch lines (VBLs), each of them pos-
sessing a Bloch point (BP)—is investigated. The presence of
such magnetic singularities affects deeply the dynamic sus-
ceptibility spectra with the splitting of the fundamental DW
mode. Resonant absorptions arising from DW parts are
thereby identified.

II. NUMERICAL METHOD AND SAMPLE
CHARACTERISTICS

The high-frequency response of multidomain bubble
states is investigated by means of micromagnetic simulations
using two 3D codes described elsewhere.'> These codes are
based on the Landau-Lifshitz (LL) equation for magnetiza-
tion motion,

dM(r,1)
dt

o
=— po YI{M(r,t) X Heg(r,1) + EM(”)
S

X [M(I’,l) X Heff(r’t)]}’ (1)

where M(r,?) is the magnetization vector which depends
both on space and time, vy is the gyromagnetic ratio, and « is
the damping parameter. The effective field Hy(r, ) incorpo-
rates the contributions from exchange, anisotropy, demagne-
tizing, and applied magnetic fields. The first code computes
an equilibrium magnetization configuration by integrating
the LL equation in the time domain using a second-order
Taylor scheme and an optimized time step. The second one
computes the full susceptibility tensor y, which relates the
high-frequency response of a magnetic configuration ém to a
weak radio frequency (rf) magnetic exciting field sh such as
om=yoh. The method is based on the linearization of the LL
equation around the equilibrium magnetization configuration
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(small-amplitude motion regime). For this purpose, the mag-
netization vector and the effective field are written as the
sum of a static part and a small dynamic perturbation. Re-
stricting to the first-order terms for the dynamic perturba-
tions in Eq. (1) and assuming an harmonic time dependence
for both oh and ém, the LL equation is then transformed into
the following linear system:

(- LI+D2—D1DH> Sm=D,oh, )
pol YIM s

where [ is the unit operator and Dy, D;, and D, are linear
operators defined in Ref. 15 (these expressions differ for the
Landau-Lifshitz-Gilbert equation'®). For a given pumping
field 6h and a given angular frequency w, the solution of the
linear system [Eq. (2)] gives access to the dynamic magne-
tization Sm(r, w). By considering an orthogonal basis of uni-
tary excitation vectors (Sh,, Sh,, hs) and the resulting re-
sponses (dm,, dm,, dm;), the local dynamic susceptibility
tensor is given by

Xij(r,(,l)):(Smi' &l] i,j: 1,2,3, (3)

and the dynamic susceptibility tensor averaged over the par-
ticle’s volume V is expressed by

Xij(w) = <Xij(r»w)>v l’.] = 1’2’3- (4)

These two quantities will be exploited hereafter. The local
susceptibility tensor allows visualizing the spatial distribu-
tion of the high-frequency magnetic response within the par-
ticle and especially at the resonance frequencies of absorp-
tion lines. For axially symmetric elements, the map of local
susceptibility will be displayed in a vertical plane cutting the
dot center. The frequency-dependent global susceptibility
tensor corresponds to the dynamic susceptibility spectrum.
Hereafter, the analysis will be restricted to the imaginary
parts of diagonal elements of local and global susceptibility
tensors, and only spatially uniform pumping fields will be
considered. It should be stressed that one advantage of this
frequency domain method is the possibility of spectral re-
finement around the absorption lines ensuring high-
resolution spectra. Typically, between 100 and 200 frequency
points were necessary for obtaining each susceptibility spec-
trum presented in Sec. III.

In order to solve the linear system [Eq. (2)], the magnetic
sample is discretized using a regular cubic mesh. The mesh
sizes A;, i=x,y,z are chosen to be lower than the smallest
characteristic length between the exchange length, A
=\r'2A/(,LLOM§), where A is the exchange constant and the
Bloch DW width parameter A, is defined as AO:\@‘TKW
These static and dynamic micromagnetic codes were previ-
ously used for studying the high-frequency response of small
Py cylindrical dots with a vortex-type magnetic
configuration'” and cylindrical dots with a perpendicular an-
isotropy supporting bidomain states.'*

The micromagnetic simulations were performed using
magnetic parameters representative of ferromagnetic alloys
(FePt, CoPt, and FePd) displaying a large perpendicular an-
isotropy (Q>1) and similar to those reported in Ref. 14,
namely: M¢=1.12510° A/m, A=10""" J/m, K,=0.9510°
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FIG. 1. (Color online) Bidomain and tridomain bubble states for
a cylindrical dot with Q=1.2, L,=19.2 nm. The dot diameter cor-
responds to D=96 nm (Dy= 1, with Dy=D/ P, and P, is the zero-
field stripe period of the extended film) for the bidomain bubble
state (left image) and D=192 nm (D,=2) for the tridomain bubble
state (right image). The color images represent the reduced magne-
tization component m,=M /Mg at the dot boundaries for the respec-
tive bubble states.

> D,

J/m3, the gyromagnetic ratio y=1.7610'" s7! T~!, and the
damping parameter a=0.02. The quality factor Q is equal to
1.2. The corresponding characteristic lengths are A
=3.5 nm and Ay=3.2 nm, and the mesh sizes were chosen
to be equal to A=A =A =12 nm. Two dot thicknesses are
considered L,=19.2 nm for the first two parts and L,
=38.4 nm for the last one [bidomain bubble configuration
with Bloch lines (BLs)], whereas the dot diameter ranges
from D=96 nm (Dy=1) up to D=192 nm (Dy=2). It
should be remarked that reducing dot thickness with respect
to the Ref. 14 leads to a small decrease in the zero-field
stripe period (about 10 % between L,=50 nm and L,
=19.2 nm) and, consequently, does not change significantly
the value of D,

III. MICROMAGNETIC SIMULATION RESULTS
A. Bidomain bubble state

This section addresses the bidomain bubble configuration
in the range 1=Dy=2. The computed static magnetization
configuration of the bidomain bubble state at remanence is
illustrated in Fig. 1 (upper left image), which represents the
reduced magnetization component m,=M /Mg at the dot
boundaries for a cylindrical dot with D=96 nm and L,
=19.2 nm. The inner domain is upward magnetized,
whereas the outer domain is downward magnetized. Detailed
descriptions of the magnetization configuration associated
with the bidomain bubble state have been previously
reported.®>1* In short, the main characteristics are the fol-
lowing. (i) At remanence, the bidomain bubble state has a
nonzero total magnetization along the symmetry axis, the
size of the inner domain being lower than the one of the
outer domain. (ii) The circular DW is twisted with a Bloch
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FIG. 2. (Color online) Evolutions of the equilibrium DW radius
70 (black lines and symbols) and the net perpendicular magnetiza-
tion component |(m.)| (red lines and symbols) as a function of the
dot radius. The results of 3D micromagnetic simulations are dis-
played using full circles (r,) and squares (|{m.)|). For the micro-
magnetic simulations, the equilibrium DW radius is evaluated at the
midplane of the dot z=0. The dashed curves are guides for eyes.
The solid curves represent the dot radius dependences of r,,, and
|(m,)| deduced from the analytical domain model [Eq. (7)].

character at the dot center and a Néel character at the dot
surfaces, the Néel part being wider than the Bloch part. (iii)
The domain magnetization deviates slightly from the z axis
at the dot edge (flowering effect). Increasing dot diameter
leads to an expansion of the DW. The DW radius at the
midplane of the dot, z=0, varies linearly with the dot diam-
eter as reported in Fig. 2. Consequently, the absolute value of
the space-averaged reduced magnetization along the z axis,
[(m.)|, is reduced for increasing dot diameter. It is instructive
to compare these variations computed by micromagnetic
simulations with the ones deduced from an analytical domain
model valid in the high-Q limit. This model is based on the
assumptions of alternately up and down domains separated
by an infinitely thin cylindrical DW characterized by the sur-
face energy density o,, and the radius r,. In addition, the z
dependence of the magnetization configuration is neglected
(in particular, no DW twist). This approach was first devel-
oped for studying the stability of magnetic bubbles within an
infinite plate.!® Later, the effect of the finite extent of a cir-
cular plate was incorporated in the model.!” In our case, the
equilibrium DW radius, r,,, results from the balance be-
tween the pressures on the DW originating from the surface
tension and the demagnetizing field. This condition reads:

0-\/1/ Ty
— =2MHp (r,), (5)

w

where H p..(r,) is the z component of the demagnetizing field
averaged over the dot thickness, evaluated at the DW radius,
H D,z(”w)=i I éZHZYD(z,rW)dz. HD’Z can be computed using the
superposition of the demagnetizing fields arising from two
uniformly magnetized cylinders with magnetization M, =
—Myg and radius r (dot radius), and magnetization M, =
+2M and radius r,,, respectively.?? This leads to the follow-
ing expression:
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where the F, function is defined as?' F,(a,b)
=[ge ””Jo(u)Jl(au)— with J, and J; the Bessel functions of
the zero and first orders.

Inserting Eq. (6) in Eq. (5), the z-averaged force equation
takes, therefore, the following form:

I 2r,)2r,
Z e 2w
L. L,

rleo)-rl)
IR Tl

with IEG'W/,LLOM§=4\¢”A—[(M/ ,U«oMquo Solving Eq. (7) for fixed
values of dot radius r=D/2, [, and L, gives access to r,, and
then to (m,)=2r2,/r>~1. As shown in Fig. 2, the domain
model reproduces fair satisfactorily the evolutions of r,,, and
[m.) i
simulations.

The dynamic susceptibility spectra of a cylindrical dot
(D=96 nm and L.=48 nm) supporting a bidomain bubble
state have been previously investigated.'* As a result, the
imaginary parts of the longitudinal susceptibility spectrum
X.. and the transverse ones expressed in terms of circular
elements X", with y+=Xy, T jXu. have revealed up to 16
resonance lines within the frequency range 0.1-80 GHz.
These resonance lines arise from DW modes, mixed DW and
domain modes, and domain modes. In order to keep reason-
able computational times and to allow varying the dot diam-
eter, the cylindrical dot reported in Fig. 1 with the same
diameter D=96 nm but with a thickness L ,=19.2 nm is
considered as the reference case for the bidomain bubble
state in the present article. By comparison with the results
obtained in Ref. 14, it appears that decreasing dot thickness
results in a reduced number of resonance lines. For the sake
of clarity, only the longitudinal and the predominant circular
susceptibility spectra will be presented hereafter. Figure 3(a)
shows three resonance lines situated at 7.29, 24.96, and 40
GHz for the Y spectrum and one intensive peak at 5.38 GHz
followed by a very weak one at 24.62 GHz for the .. The
maps of the local susceptibility associated with these five
resonance lines are represented in Fig. 3(b) using a vertical
slice at y=0. Resonance line 1 corresponds to a strongly
nonuniform mode concentrated at the lateral sides of the
DW. Resonance line 2 results from a surface mode localized
near the DW (down domain side). Resonance line 3 arises
from spins in the outer down domain. This mode is quasi-
uniform along the z axis. A similar mode localized in the
inner up domain exists also for the x| spectrum (not pre-
sented here). It should be noted that the small dot thickness
prevents the splitting of the domain mode into surface and
core modes as observed in Ref. 14 (modes 5 and 7 in Fig. 5).
For the x!. spectrum, the predominant peak 4 is a DW mode
quasiuniform along the z axis, whereas the weak signal 5 is
assigned to a DW mode preferentially localized near the dot

— 2 H/
HD,zz—,quS{ , [F (1,0) - F(

IN“

Z
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FIG. 3. (Color online) High-frequency response of bidomain
bubble states as a function of the dot diameter for a fixed dot thick-
ness L,=19.2 nm. (a) Zero-field dynamic susceptibility spectra for
the predominant circular transverse element x” and the longitudinal
element X,z,z' Three dot diameters are considered: D=96 nm (black
solid line), D=153.6 nm (red dashed line), and D=192 nm (green
dot-dashed line). (b) Cross-sectional view of the local dynamic sus-
ceptibility in the vertical plane y=0 at the resonance frequency of
different lines for the dot with D=96 nm. The color code represents
the local susceptibility (imaginary part) normalized by its maximum
value (absolute value). (¢) Evolutions of the resonance frequency
for the fundamental DW mode (resonance line 4) computed from
micromagnetic simulations (full circles) and the domain model
(solid line). The dashed curve is a guide for eyes.
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surfaces. With respect to the spectra reported in Ref. 14,
reducing dot thickness leads to a shift of the spectral posi-
tions for the surface modes (resonance lines 2 and 5) toward
the higher frequencies. For DW mode 5, this change in reso-
nance frequency is accompanied with a strong attenuation of
the line. This behavior is consistent with the ones observed
for the Néel-type excitation in thin films with perpendicular
anisotropy,? and for higher-order vortex core modes existing
in cylindrical dots'” and prismatic elements without perpen-
dicular anisotropy.?

Next, the effect of the dot diameter on the dynamic sus-
ceptibility spectra is analyzed. For the probed size regime,
the number of peaks remains constant when changing dot
diameter. Figure 3(a) reveals that the resonance frequencies
of lines 1, 3, and 4 are monotonously lowered for increasing
dot diameter, whereas the spectral position of line 2 is
weakly affected (small increase in the resonance frequency
with D). One can also notice a strong attenuation accompa-
nied by a slight shift toward the higher frequencies for line 5
associated with the surface DW mode for increasing dot di-
ameter. Figure 3(c) compares the evolutions of the resonance
frequency for the fundamental DW mode as a function of the
dot diameter computed from micromagnetic simulations and
from the domain model. In this last case, the small-amplitude
DW dynamics is described by a harmonic oscillator equa-
tion,

2

dg
d2+bd—+kq 2Mh,., (8)

where ¢ is the small radial DW displacement assumed inde-
pendent of the z coordinate, r,,=r,,+¢g, m is the DW mass, b
is the viscous parameter, k is the restoring force constant, and
h,s. is the exciting magnetic field applied along the z axis.
The angular resonance frequency w, is then given by

w,= \/z )
m

The mass per unit DW area is taken equal to the
Doring mass, mp=(uyy’Ag/2)~". The restoring force con-

stant per unit DW area arises from to the static de-
1 PEp

magnetizing field and is defined as:'® k=5_— A |r -,
IHp (1)

27Tr"0L X=2Mg—; — with Ej, the demagnetlzmg

energy of the dot. Usmg Eq (6), the restoring force constant
takes the following expression:

2uoM3 | 4r, L 2r r
= s —O{Fl(l,—z)—Fl(l,O)]——{Fl(—,o)
Two Lz Two Lz Two
T L. P r L, r
_F = - F2 _,— —F2 _,0
'wo rWO erLz wo Two w0

r r L, L,
() )] "
'wo wo Two Two

with Fy(a,b)=[ge™""Jo(au)Jo(u)du and
=[ge™""Io(u)J, (au)du.

=0’

F5(a,b)
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As a result, both the micromagnetic simulations and the
domain model predict a lowering of the resonance frequency
for the fundamental DW mode as the dot radius increases for
r>70 nm. Although the numerical and theoretical ap-
proaches lead to the same spectral range for the DW reso-
nance, this one is overestimated by the domain model. This
discrepancy could be partly attributed to the DW twist ne-
glected in the domain model. The mixed Bloch-Néel charac-
ter results in an increase in the DW mass.'? For r<<70 nm,
the DW resonance frequency drops as the dot radius de-
creases for the domain model in contrast to the micromag-
netic simulations. For the domain model, this behavior re-
flects the radius dependence of the restoring force constant, k
passing through a maximum for r=70 nm. Similar evolu-
tions have been reported for different magnetic systems (pe-
riodic stripe domains, isolated bubble in an infinite plate)
with magnetostatic restoring forces arising from surface
magnetic charges.!? For 3D objects in the size range where
the confinement effect becomes important, this approxima-
tion is too crude. The nonuniform magnetic configuration
induces additional restoring forces (magnetostatic and ex-
change in nature), which should be taken into account. As a
conclusion, the domain model seems appropriate for describ-
ing the static properties but cannot reproduce the dynamic
behavior of the cylindrical DW in a large bubble radius
range.

B. Tridomain bubble state

For larger dot diameters Dy=2, a tridomain bubble state
can be stabilized at remanence. An example of such a micro-
magnetic state is displayed in Fig. 1 (upper right image) for
Dy=2. The tridomain bubble state consists in two up do-
mains (inner and outer domains) and one intermediate down
domain. These domains are separated by two circular DWs,
the radial positions of which at the midplane of the dot are
0.1=25.7 nm and r,,=65.8 nm, respectively. In contrast
to the bidomain bubble states described in Sec. III A, the
total magnetization along the symmetry axis is now positive,
(m,)=0.199. For this dot diameter, the total magnetic ener-
gies associated with the bidomain and the tridomain bubble
states are equivalent and equal to 3.03107'° J. Beyond this
value of diameter, the tridomain bubble structure becomes
the ground state for the concentric domain configurations.
The stability range of such a tridomain bubble state has been
recently studied both experimentally and theoretically for
FePt dots with a larger quality factor Q=4.7.° A higher value
of the uniaxial anisotropy constant K, (Mg being kept con-
stant) induces an increase in the zero-field stripe period P,,.
In this case, the existence of the tridomain bubble state is
typically observed above D=500 nm, which corresponds
also to Dy=2.

For the tridomain bubble state, it is interesting to distin-
guish two situations according to the relative chiralities of
the DWs (the DW chirality is defined as the sense of rotation
for the magnetization inside the DW). Let C; be the chirality
of the ith DW, C;=+1 for counterclockwise rotation and C;
=-1 for clockwise rotation. Opposite and identical chiralities
between the two DWs are characterized by C;C,=-1 and
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FIG. 4. (Color online) Static magnetization configurations for
tridomain bubble states in a cylindrical dot with Q=1.2, L,
=19.2 nm, and D=192 nm. (a) Definition of relative DW chirali-
ties. The arrows represent the sense of rotation for the magnetiza-
tion within the DWs. (b) Magnetization profiles along the dot radius

at the position z=L,/4 for the tridomain bubble states with C,C,
==*1.

C,C,=+1, respectively [Fig. 4(a)]. The micromagnetic
simulations yield the same total magnetic energies for both
chirality configurations. The static magnetization profiles
across the dot radius for the two types of tridomain bubble
states are represented in Fig. 4(b). These profiles have been
computed at the position z=L,/4. Some striking features are
revealed. (i) The magnetization is oriented along the symme-
try axis inside the domain (|(m.)| very close to unity). (ii)
The azimuthal magnetization component m,, is concentrated
within the DWs. (iii) A significative radial magnetization
component m,, exists also inside the DWs. This component
passes through a maximum for z=L./2 (Néel-type DW) and
disappears for z=0 (Bloch-type DW). The sign of m,
changes between the two DWs reflecting the opposite DW
twists. (iv) At the middle of the intermediate domain, both
azimuthal and radial magnetization components tend toward
zero. This means that no overlapping exists between the two
static DW profiles. (v) At the dot edge, a nonzero radial
component of magnetization subsists due to the small flow-
ering effect. This component vanishes at the midplane z=0
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FIG. 5. (Color online) High-frequency response of the tridomain
bubble state described in Fig. 4. (a) Zero-field dynamic susceptibil-
ity spectrum x for C;C,=-1. (b) Cross-sectional view of local
susceptibility in the vertical plane y=0 at the resonance frequency
of different lines. The rule for color code imaging is the same as in
Fig. 3. (c) Effect of the relative DW chiralities. The red dashed
curves correspond to CyC,=+1, whereas the black solid lines are
associated with C;Cy=-1.

and takes its maximum value at the dot surfaces. For z
=L./4, m, is equal to 0.08 at the dot edge, and correlatively,
due to the conservation of the magnetization modulus, m, is
slightly reduced, m,=0.997. (vi) The two chirality configu-
rations are only distinguished by the opposite signs of m,
between the external DWs.

The high-frequency response of the tridomain bubble
states is now investigated. First, the predominant circular
dynamic susceptibility spectrum for the case C;C,=-1 is
reported in Fig. 5(a). It should be noted that the opposite sign
of (m.) with respect to the bidomain bubble state results in
change in the predominant circular polarization (y, instead
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of x_). The spectrum consists in four resonance lines. The
positions of the three lowest-frequency lines (5.36, 24.99,
and 36.86 GHz) are close to those obtained for the bidomain
bubble state with D=153.6 nm (4.99, 25.05, and 35.73
GHz). A new excitation line appears at 48.17 GHz. The maps
of local susceptibility [Fig. 5(b)] associated with lines 1, 2,
and 3 resemble the ones described for the bidomain bubble
state, namely, a mode localized at the lateral sides of the
external DW, a surface mode concentrated near the external
DW (up domain side), and a uniform domain mode within
the external up domain. The external DW and the outer up
domain for the tridomain bubble state play the role of the
single DW, and the outer down domain for the bidomain
bubble state. The new resonance line 4 is related to spins
located inside the inner up domain with a significant inho-
mogeneity along the dot thickness. Figure 5(c) points out the
effect of the relative DW chiralities on the ) spectrum.
Transforming C,C,=-1 into C,C,=+1 (changing the chiral-
ity of the external DW) induces a shift of line 1 toward the
low frequencies, appearance of a shouldering on the high-
frequency side of line 2, and emergence of a new line labeled
4'. The spatial distribution of mode 4’ [Fig. 5(b)] indicates
that it is mainly localized within the inner up domain but a
significative response exists also within the outer up domain.
In summary, inverting the relative chirality between the two
DWs not only affects in a subtle way the absorption lines
associated with the external DW, but also the one related to
the inner domain far from the external DW. This demon-
strates the existence of the dynamic magnetic coupling be-
tween the two DWs and between the domain and DW in
such geometrical confined system. Regarding the dynamic
coupling between domain and DW, it is worth noting that the
intensive line 3 is not altered by the change in relative DW
chirality (superimposition of lines 3 for C,C,=* 1, not pre-
sented here). The dynamic coupling between the two DWs is
further highlighted when the pumping field is applied along
the z axis. The x!, spectrum is reported in Fig. 6(a) for the
two types of tridomain bubble state. In each case, two reso-
nance lines are observed within the frequency range 0.1-10
GHz instead of a unique peak for the bidomain bubble state.
The resonance frequencies are f,5=2.81 GHz and f,q
=6.17 GHz for C,;C,=-1, and f,s=2.95 GHz and f.
=5.88 GHz for C;C,=+1. The map of local susceptibility
for the two resonance lines is shown in Fig. 6(b) for the
tridomain bubble state with C;C,=—-1. The two lines result
from coupled DW modes. For the low-frequency mode, the
imaginary parts of the local susceptibility have opposite
signs between the two DWs. This means that the two DWs
oscillate out of phase along the radial direction (breathing
DW mode). In contrast, the two DWs oscillate in phase along
the radial direction for the high-frequency mode. It should be
noted that for an infinite extent film with equivalent volumes
of up and down domains, this mode would lead to a zero net
magnetization along the z axis (displacement as a whole).
For finite cylindrical dot and as a consequence of lateral
geometrical confinement, the local susceptibility map indi-
cates that the two DWs play an inequivalent role with a
stronger dynamic response for the internal DW [Fig. 6(b)].
For the tridomain bubble state with C;C,=+1, the mode
images appear quite similar. However, the spectral positions
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FIG. 6. (Color online) High-frequency response of the tridomain
bubble state described in Fig. 4. (a) Zero-field dynamic susceptibil-
ity spectra X,z,z for C;C,= = 1.(b) Cross-sectional view of local sus-
ceptibility in the vertical plane y=0 at the resonance frequency of
the two lines for C{C,=-1. The rule for code color imaging is the
same as in Fig. 3.

of resonance lines are shifted. The resonance frequency of
line 1 increases, whereas the one of line 2 decreases. Further-
more, the product of resonance frequencies for each relative
DW chirality is constant, [f,sX frﬁ]clczz_l =[f,s X fr()]ClCz:I
=17.34 GHz?. This kind of relationship has been also re-
ported for the case of soft elliptical magnetic particles sup-
porting a pair of magnetic vortices.>* For this case, the topo-
logical quantity of interest is the polarization P; of the ith
vortex (direction of the magnetization inside the vortex
core), P;=* 1. As a result of the vortex-vortex dynamic in-
teraction, four resonance modes resulting from the combina-
tion of the core polarization and the phase relation between
the core motions have been predicted by micromagnetic
simulations, and three of which have been experimentally
detected using a broadband microwave reflection technique.
More generally, the coupled DW dynamics inside the trido-
main bubble state belongs to the up-to-date topic of soliton-
pair dynamics including also, for instance, the vortex-
antivortex interactions as recently reported.>~2’

C. Metastable charged bidomain bubble state

The previous section has been devoted to axially symmet-
ric micromagnetic states. However, some metastable states
exist at remanence for high enough cylindrical dots. Let us
consider a cylindrical dot with D=153.6 nm and L,
=38.4 nm. Starting from an initial magnetization configura-
tion with an inner up domain surrounded by an outer down
domain such as the net magnetization is zero along the z
axis. The static micromagnetic simulations converge toward
a bidomain bubble state including a pair of vertical BLs
(charged bubble). In contrast, the same computation per-
formed starting with an initial magnetic configuration with a
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FIG. 7. (Color online) Static magnetization configuration for the
charged bidomain bubble state with two BLs and two BPs. (a) Azi-
muthal magnetization component n,, at the position z=0. (b) Radial
magnetization component 1, at the position z=0. (c) Radial mag-
netization components in the vertical planes ¢= ¢, (left image) and
¢@=¢, (right image). The azimuthal and radial magnetization com-
ponents are normalized by the saturation magnetization.

net magnetization along the z axis approaching the real value
results in an equilibrium bidomain bubble state without BLs
(normal or light bubble). Surprisingly, the total magnetic en-
ergies of the light and charged bubbles are very close,
2.771 X 1071 J and 2.796 X 1076 J, respectively. A detailed
analysis of the charged bubble state has been realized. Figure
7(a) shows the azimuthal magnetization component m,, at the
position z=0. The DW consists in two parts with positive
and negative values of m,, respectively. The locations where
m,=0 inside the DW determine the positions of BLs charac-
terized by the azimuthal angles ¢;=99.1° and ¢,=172.3°.
Figure 7(b) represents the radial magnetization component
m,, in the horizontal plane z=0. The BLs appear with oppo-
site signs of m,, corresponding to opposite BL chiralities. In
order to gain a better understanding of the BL structure, the
maps of m, in the two vertical planes ¢=¢; and ¢=¢, are
displayed in Fig. 7(c). Some features are revealed. (i) The
two BLs are canted in opposite senses with respect to the z
axis. (ii) The sign of the radial magnetization component
changes along the dot thickness revealing the existence of a
BP within each BL. (iii) A detailed analysis evidences that
the BPs possess symmetric z positions with respect to the
midplane z=0. The BPs are located between the mesh nodes,
and an estimate of their position is zgp ;=-1.4 nm==—zpp .
As a consequence, the two BLs have the same chiralities for
z<zpgp; and z>zpp,, and opposite chiralities for zgp; <z
<zpp,. The different types of charged bubble states have
been described in depth during the extensive works on
bubble garnet films.'? By adopting the classification used in
Ref. 13, a bidomain bubble state can be characterized by the
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FIG. 8. (Color online) High-frequency responses for the light
bubble (LB) and the charged bubble (CB) described in Fig. 7. (a)
Zero-field dynamic susceptibility spectra x7,. (b) Local susceptibil-
ity maps for the light and charged bidomain bubble states. The
isosurfaces in beige correspond to the 5% highest positive values,
the ones in purple to the 5% highest negative values.

triplet (S,7,p), where S is the winding number, [ is the num-
ber of BLs, and p is the number of BPs. Our charged bubble
corresponds to a (1,2,2) state, whereas the light bidomain
bubble is associated with a (1,0,0) state. Lastly, the question
of asymmetric azimuthal positions of BLs within the DW has
been discussed in the past.?® This equilibrium spacing results
from a balance between the magnetostatic and exchange in-
teractions. A similar situation has been reported in ring ele-
ments supporting a twisted state including two interacting
transverse DWs.?’

Figure 8(a) shows the x”. spectrum obtained for the light
and charged bidomain bubbles. The presence of BLs induces
a splitting of the initial unique resonance line into two peaks
labeled 1 and 2 at 4.05 GHz and 4.83 GHz, respectively. For
the light bubble, this line arises from the uniform DW mode.
For the charged bubble, the two modes are localized within
the DW, but only some parts of DW contribute to the dynam-
ics. In particular, the BL regions are weakly excited. For
mode 2, the DW region delimited by the BLs oscillates out
of phase with respect to the other excited DW parts. It should
be noted that a small-amplitude signal (about two orders of
magnitude weaker with respect to resonance lines 1 and 2)
has been also observed at 7.25 GHz (not presented here).
This peak is assigned to a higher-order DW mode with mul-
tiple azimuthal nodes. In all cases, the presence of Bloch
lines is indirectly revealed through the perturbation induced
in the DW spectrum. No evidence of Bloch line resonances
has been stated within the frequency range 1-10 GHz. The
question of DW resonances in the presence of BLs and even-
tually BPs was addressed in the past both theoretically and
experimentally for the case of bubble garnet films.’*-33 For
an isolated magnetic bubble, it was demonstrated that the
resonance frequency of the fundamental DW mode depends
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on the DW state.3® Moreover, a new coupled DW and BL
mode localized at the BL position, the resonance frequency
of which lies below the one of the fundamental DW breath-
ing mode, has been predicted for a straight 180° DW with a
vertical BL and evidenced using magneto-optic resonance
spectroscopy.®? In our case, the situation is quite different
due to the complexity of the charged bubble state and the
interaction between the two BLs. The coupled dynamics of
DW and BL in this rigid magnetic structure is probably ex-
tensively modified, which could explain the absence of reso-
nance lines associated with VBLs. The large value of the
damping parameter (one order of magnitude larger than the
one of garnet film reported in Ref. 32) could also screen the
modes localized at the VBL positions. Nevertheless, the
presence of magnetic singularities modifies significantly the
high-frequency response of bidomain bubble states.

IV. SUMMARY AND CONCLUSIONS

The excitation spectrum of multidomain bubble states has
been studied by means of 3D micromagnetic simulations. In
such systems and for a fixed dot thickness, the relevant pa-
rameter is the dot diameter, which controls the number of
domains. For the regime of diameter where the bidomain
bubble is the ground state, increasing dot diameter results in
a shift of the resonance frequencies for the main DW, and
domain excitations toward the low frequencies. For a larger
dot diameter where a tridomain bubble state can be stabi-
lized, the high-frequency response of a tridomain state has

PHYSICAL REVIEW B 78, 184411 (2008)

been investigated. The dynamic susceptibility spectrum
along the z axis exhibits two coupled DW modes (out-of-
phase and in-phase DW oscillations along the radial direc-
tion), the resonance frequency of which depends on the rela-
tive DW chiralities. Lastly, a metastable bidomain bubble
state including a pair of vertical BLs, each of them possess-
ing a BP, has been also analyzed. As a result, such a compli-
cated magnetic state modifies deeply the high-frequency
spectrum with a splitting of the fundamental DW mode into
multiple modes arising from oscillations of DW segments
with different phase relations. This last finding provides an
example of the impact of magnetic singularities on the dy-
namic susceptibility spectra. More generally, one can antici-
pate the expected complexity of dynamic susceptibility spec-
tra for real dots due to the presence of geometrical
irregularities or defects. Such remarks would have to be kept
in mind for the applications based on bubble domain ele-
ments. Lastly, it would be crucial to compare our numerical
findings with experimental data arising from broadband fer-
romagnetic resonance experiments. In particular, the inten-
sive DW excitations lying at a few GHz could be detected in
perpendicular pumping configuration (exciting field along
the z axis).
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